

Fig. 13
Fig. 13 shows a sketch of the curve $y=\mathrm{f}(x)$, where $\mathrm{f}(x)=x^{3}-5 x+2$.
(i) Use the fact that $x=2$ is a root of $\mathrm{f}(x)=0$ to find the exact values of the other two roots of $\mathrm{f}(x)=0$, expressing your answers as simply as possible.
(ii) Show that $\mathrm{f}(x-3)=x^{3}-9 x^{2}+22 x-10$.
(iii) Write down the roots of $\mathrm{f}(x-3)=0$.

3 You are given that $\mathrm{f}(x)=x^{3}+9 x^{2}+20 x+12$.
(i) Show that $x=-2$ is a root of $\mathrm{f}(x)=0$.
(ii) Divide $\mathrm{f}(x)$ by $x+6$.
(iii) Express $\mathrm{f}(x)$ in fully factorised form.
(iv) Sketch the graph of $y=\mathrm{f}(x)$.
(v) Solve the equation $\mathrm{f}(x)=12$.

4 (i) Sketch the graph of $y=x(x-3)^{2}$.
(ii) Show that the equation $x(x-3)^{2}=2$ can be expressed as $x^{3}-6 x^{2}+9 x-2=0$.
(iii) Show that $x=2$ is one root of this equation and find the other two roots, expressing your answers in surd form.

Show the location of these roots on your sketch graph in part (i).

5 (i) Find the equation of the line passing through $\mathrm{A}(-1,1)$ and $\mathrm{B}(3,9)$.
(ii) Show that the equation of the perpendicular bisector of AB is $2 y+x=11$.
(iii) A circle has centre $(5,3)$, so that its equation is $(x-5)^{2}+(y-3)^{2}=k$. Given that the circle passes through A, show that $k=40$. Show that the circle also passes through B.
(iv) Find the x-coordinates of the points where this circle crosses the x-axis. Give your answers in surd form.

